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Abstract. We investigate the problem of model selection for learning algorithms
depending on a continuous parameter. We propose a model selection procedure based
on a worst-case analysis and on a data-independent choice of the parameter. For the
regularized least-squares algorithm we bound the generalization error of the solution
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by a quantity depending on a few known constants and we show that the corresponding
model selection procedure reduces to solving a bias-variance problem. Under suitable
smoothness conditions on the regression function, we estimate the optimal parameter
as a function of the number of data and we prove that this choice ensures consistency
of the algorithm.

1. Introduction

One of the main goals of Learning Theory is the definition of an algorithm that,
given a set of examples (xi , yi )

�
i=1, returns a function f such that f (x) is an

effective estimate of the output y when a new input x is given. The map f is
chosen from a suitable space of functions, called hypothesis space, encoding some
a priori knowledge on the relation between x and y.

A learning algorithm is an inference process from a finite set of data based on
a model represented by the hypothesis space. If the inference process is correct
and the model realistic, as the number of available data increases, we expect the
solution to approximate the best possible solution. This property is usually called
consistency [7], [8], [10], [12], [21].

A central problem of Learning Theory is a quantitative assessment of the in-
ference property of a learning algorithm. A number of seminal works, see, for
instance, [1], [7], [8], and [21], show that the essential feature of an algorithm
should be the capability of controlling the complexity of the solution. Roughly
speaking, if the model is too complex the algorithm solution overfits the data. In
order to overcome overfitting, different complexity measures are introduced, such
as VC-dimension [21], Vγ -dimension [1], and covering numbers [7], [24]. Inter-
estingly, the good behavior of a large class of algorithms has also been recently
explained in terms of stability with respect to variations of the given training set
[4], [17].

For both approaches it is natural to introduce a parametric family of learning
algorithms in which the parameters control the generalization properties. Typical
instances of such algorithms are regularized (à la Tikhonov) algorithms, see, for
instance, [6], [10], [11], [16], and [20]. In this context a central problem is the
optimal choice of the parameter as a function of the number of examples.

In this paper we address this issue for the learning algorithms arising in the
minimization of the regularized empirical error,

1

�

�∑
i=1

(yi − f (xi ))
2 + λ‖ f ‖2,

where the minimization takes place on a Hilbert space of continuous functions. The
corresponding algorithm is usually called the regularized least-squares algorithm
or regularization networks [6], [10], [11], [16].

In the above functional the first term measures the error of f on the given
examples, while the second term is a penalty term that controls the “smoothness”
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of f in order to avoid overfitting. The parameter λ controls the trade-off between
these two terms, that is, the balance between the fitting capability of the solution
and its complexity.

Our results are in the spirit of [6] and [15]. In particular, our aim is to provide a
selection rule for the parameter λ which is optimal for any number � of examples
and provides the desired asymptotic behavior when � goes to infinity. As usual,
see [7], [10], and [21], we describe the relation between x and y by means of an
unknown probability distribution ρ(x, y). Given a solution f , the expected risk∫

(y − f (x))2 dρ(x, y)

measures how well the probabilistic relation between x and y is described by the
deterministic rule y = f (x). Following [6], the optimal parameter is the one that
provides the solution with minimal expectation risk. Since the expected risk is
unknown, we need a probabilistic bound on it to have a feasible selection rule. The
bound we propose relies on the stability properties of the regularized least-squares
algorithm [4], and does not depend on any complexity measure on H, which is a
central tool in [6] and [15]. A different point of view is given in [20].

The paper is organized as follows. In Section 2 we recall some basic concepts
of Learning Theory and we discuss the problem of model selection for algorithms
depending on a parameter. In Section 3, we specialize this problem to the regular-
ized least-squares algorithm and find a probabilistic bound for the expected risk
of the solution, which is the main result of the paper. In Section 4 we estimate
the optimal parameter and prove the consistency of the regularized least-squares
algorithm.

2. Learning Theory and Optimal Choice

This section is devoted to the following issues. First, we briefly recall the basic
concepts of Learning Theory. Second, we discuss the problem of the choice of the
parameter for families of learning algorithms labeled by one real-valued parameter.
In particular, we give some insights into the relation between the Bayesian approach
(average case) and the learning approach (worst case), and we propose a general
framework for parameter selection in a worst-case scenario approach. Finally, we
discuss the problem of a data-dependent choice of the parameter. In the following
we assume the reader to have a basic knowledge of Learning Theory (for reviews,
see [5], [7], [10], [12], and [21]).

2.1. Learning Theory

In Learning Theory, examples are drawn from two sets: the input space X and the
output space Y . The relation between the variable x ∈ X and the variable y ∈ Y is
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not deterministic and is described by a probability distribution ρ, which is known
only by means of � examples D = ((x1, y1), . . . , (x�, y�)), drawn identically and
independently from X × Y according to ρ. The set of examples D is called a
training set. For regression problems, which we deal with in this paper, the output
space Y is a subset of real numbers.

The aim of Learning Theory is to learn from a training set a function f : X →
Y , called an estimator, such that f (x) is an effective estimate of y when x is given.
The inference property of f is measured by its expected risk,

I [ f ] =
∫

X×Y
( f (x)− y)2 dρ(x, y).

Since we are dealing with regression problems, the choice of the quadratic loss
function is natural. However, the discussion of this section holds for a wide class
of loss functions (for a discussion of the properties of arbitrary loss functions, see
[10], [18], and [20]).

In Learning Theory one approximates the probabilistic relation between x and
y by means of functions y = f (x) defined on the input space X and belonging to
some a priori given set of model functions, called a hypothesis space. For regression
problems the model functions f are real-valued.

A learning algorithm is a map that, given a training set D, outputs an estimator
fD chosen in the hypothesis space. A good algorithm is such that the expected risk
I [ fD] is as small as possible, at least for generic training sets.

A well-known example of a learning algorithm is the empirical risk minimiza-
tion algorithm, see, for instance, [7], [10], and [21]. For a training set D, the
estimator fD is defined as the one that minimizes the empirical risk

I D
emp[ fD] = 1

�

�∑
i=1

( fD(xi )− yi )
2

over the hypothesis space. Different choices of the hypothesis space give rise to
different algorithms, so one usually introduces a sequence of nested hypothesis
spaces,

Hλ1 ⊂ Hλn ⊂ · · · ⊂ H,
where λ1 > λ2 > · · · > λn and Hλk is the subset of functions in the model space
H that have complexity less than 1/λk , according to some suitable measure on
complexity (e.g., the inverse of the norm of f [7], or its VC-dimension [10], [21]).
The regularized least-squares algorithm discussed in the Introduction is another
example of a learning algorithm: for a training set D, the estimator fD is defined
as the minimizer of

1

�

�∑
i=1

(yi − f (xi ))
2 + λ‖ f ‖2,

where the minimum is on a Hilbert spaceH of functions defined on X (other loss
functions and penalty terms can be considered instead of ‖ f ‖2, see [10], [20], and
[21] for a discussion).
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In both examples there is a family of algorithms labeled by a parameter control-
ling the complexity of the estimator. The problem of model selection corresponds
to characterizing a rule for the choice of the parameter in such a way that some
criterion of optimality with respect to the inference and consistency properties is
satisfied. The following section discusses this question.

2.2. Optimal Choice and Model Selection Rule

In the following we consider a family of learning algorithms that are labeled by a
positive parameter λ; we assume that the complexity of the solution decreases with
λ. Given a parameter λ and a training set D, the algorithm provides an estimator
f λD ∈ H, whereH is some given (vector) space of functions. In this paper the space
H is given, however, one can easily extend the present discussion to the case ofH
being labeled by some parameters, as kernel parameters whenH is a reproducing
kernel Hilbert space [2].

In this framework the problem of model selection is the problem of the choice of
the optimal parameter λ. In applications the parameter λ is usually chosen through
an a posteriori procedure like cross-validation or using a validation set; see, for
instance, [22].

To give an a priori definition of the optimal regularization parameter we recall
that a good estimator f λD should have a small expected risk I [ f λD]. So a natural
definition for the optimal parameter λopt, is the value of λ minimizing I [ f λD].
However, this statement needs some careful examination since I [ f λD] is a random
variable on the sample space of all training sets. This observation introduces some
degree of freedom in the definition of λopt. Following a Bayesian approach, a
possible definition is the following:

λopt := argmin
λ>0

ED(I [ f λD]), (1)

where ED denotes the expectation with respect to the training sets [23]. The above
definition can be refined by also considering the varianceσ 2 of the random variable,
for example, considering

λopt := argmin
λ>0
{ED(I [ f λD])+ σ 2(I [ f λD])}. (2)

A third possibility is the worst-case analysis. Given a confidence level η ∈ (0, 1),
we define the quantity

Eopt(λ, η) := inf
t∈[0;+∞)

{t | Prob
{

D ∈ Z �|I [ f λD] > t
} ≤ η},

and we let the optimal parameter be

λopt(η) := argmin
λ>0

Eopt(λ, η). (3)
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We notice that the first two definitions require the knowledge of the first- (and
second-)order momentum of the random variable I [ f λD]. This is a satisfactory
characterization if we assume we are dealing with normal distributions. On the
other hand, it is easy to see that the third definition amounts to a complete knowl-
edge of the random variable I [ f λD]. Indeed, given λ, Eopt(λ, η), viewed as function
of 1− η, is the inverse of the distribution function of I [ f λD].

However, in Learning Theory, the above definitions have only a theoretical
meaning since the distribution ρ and, hence, the random variable I [ f λD], are un-
known. To overcome this problem, one studies the random variable I [ f λD] through
a known probabilistic bound E(λ, �, η) of the form

Prob{D ∈ Z � | |I [ f λD] > E(λ, �, η)} ≤ η. (4)

For the worst-case setting the above expression leads to the following model se-
lection rule:

λ0(�, η) := argmin
λ>0

E(λ, �, η). (5)

In order to make the above definition rigorous we assume that E extends to a
continuous function of λ on [0,+∞] into itself, and replace (5) by

λ0(�, η) = max argmin
λ∈[0,+∞]

E(λ, �, η). (6)

The continuity of E ensures that the definition is well stated, even if λ0 could
occasionally be zero or infinite. We select the maximum among the minimizers
of E to enforce the uniqueness of λ0: this choice appears quite natural since it
corresponds to the most regular estimator fitting the constraint of minimizing the
bound.

Some remarks are in order. First of all, different bounds give rise to different
selection criteria. Moreover, to have a meaningful selection rule the bound E has
to be a function only of known quantities. In this paper we exhibit a bound that
gives rise to an optimal parameter defined through a simple algebraic equation.
Second, the random variable I [ f λD] depends on the number � of examples in the
training set and, as a consequence, the optimal parameter λ0 is a function of �. So
it is natural to study the asymptotic properties of our selection rule when � goes
to infinity. In particular, a basic requirement is consistency, that is, the fact that
I [ f λ0(�)

D ] approaches the smallest attainable expected risk as the number of data
goes to infinity. The concept of (weak universal) consistency is formally expressed
by the following definition [8].

Definition 2.1. The one-parameter family of estimators f λD provided with a
model selection rule λ0(�) is said to be consistent if, for every ε > 0, it holds
that

lim
�→∞

sup
ρ

Prob

{
D ∈ Z �

∣∣∣I [ f λ0(�)
D ] > inf

f ∈H
I [ f ]+ ε

}
= 0,

where the sup is over the set of all probability measures on X × Y .
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In the above definition, the number inf f ∈H I [ f ] represents a sort of bias error
[12], associated with the choice of H and, hence, it cannot be controlled by the
parameter λ. In particular, if there exists fH ∈ H such that I [ fH] = inf f ∈H I [ f ],
the estimator fH is the best possible deterministic description we can give of the
relation between x and y, for a given H. For the sake of clarity, we notice that,
for the empirical risk minimization algorithm, the bias error is usually called the
approximation error and it is controlled by the choice of the hypothesis space [7],
[15].

2.3. Data Dependency

The choices of the parameter λ discussed in the above section are a priori since they
do not depend on the training set D. One could also consider a posteriori choices
where λ0 depends on the training set D. In a worst-case analysis, this corresponds
to considering a bound depending explicitly on D, that is,

Prob
{

D ∈ Z �
∣∣I [ f λD] > E(λ, �, η, D)

} ≤ η. (7)

A well-known example of the above bound is the principle of structural risk min-
imization [10], [21]. For the Empirical Risk Minimization algorithm in nested
hypothesis spaces

Hλ1 ⊂ Hλn ⊂ · · · ⊂ H,
the parameter λ is chosen in order to minimize the bound

E(λ, �, η, D) = I D
emp[ f λD]+ G(λ, �, η, D), (8)

where G(λ, �, η, D) is a term that controls the complexity of the solution. Usually,
G does not depend on the training set since the measure of complexity is uniform
on the hypothesis space Hλ. However, we get a dependence of the bound on D
because of the presence of the empirical term I D

emp[ f λD] in (8).
Now, mimicking the idea of the previous discussion, we could define the optimal

parameter as

λ0(�, η, D) := argmin
λ>0

E(λ, �, η, D).

Clearly, we get a dependence of the optimal parameter on the training set D. This
dependence can be, in principle, problematic, due to the probabilistic nature of (4).
Indeed, for every λ, we can define the collection of good training sets for which
the bound is tight, i.e.,

A(λ) = {D ∈ Z � | I [ f λD] ≤ E(λ, �, η, D)}.

By definition of the bound E , the probability of drawing a good training set D ∈
A(λ) is greater than 1−η. However, the previous confidence level cannot be applied
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to I [ f λ0(D)
D ]. Indeed, it can happen that the probability of drawing a training set D

in the set

{D ∈ Z � | I [ f λ0(D)
D ] ≤ E(λ0(D), �, η, D)} = {D ∈ Z � | D ∈ A(λ0(D))}

could be much smaller than 1− η, depending on the structure of the sets A(λ) in
the sample space Z �. Simple toy examples of this pathology can be built.

A possible solution to this kind of problem requires further analyses, see, for
instance, [3], [8], and [21]. In this paper we avoid the problem by considering
data-independent bounds and hence a priori model selection rules.

3. A Probabilistic Bound for the Regularized Least-Squares Algorithm

We consider throughout the problem of model selection for the regularized least-
squares algorithm in the regression setting.

In the present section we first show that the expected risk of the estimator f λD
concentrates around the expected risk of f λ, where f λ is the minimizer of the
regularized expected risk I [ f ]+ λ‖ f ‖2

H.
Moreover, we give a probabilistic bound of the difference between I [ f λD] and

I [ f λ] in terms of a function S(λ, �, η) depending on the parameter λ, the number
of examples �, and the confidence level 1− η. Our results are based on the stabil-
ity properties of the regularized least-squares algorithm [4], and the McDiarmid
concentration inequality [13]. In particular, we do not make use of any complexity
measure on the hypothesis space, like the VC-dimension [21], or the covering
number [7], [15]. We stress that the bound S depends on H only through two
simple constants related to the topological properties of X and Y .

Compared to previous results (see, for instance, [3], [4], [7], [14], [15], [21])
we are not interested in the deviation of the empirical risk from the expected risk
and we bound directly the expected risk of the estimator f λD . Moreover, our result
concentrates I [ f λD] around I [ f λ] both from above and below, so that I [ f λ] will
play the role of approximation error and S(λ, �, η) the role of sample error (our
terminology is close to the definition of [6], which is somewhat different from the
notation of [7] and [15]).

Finally, in order to obtain algorithmically computable results, we make some
smoothness assumption on the probability distribution ρ. By means of standard
results in approximation theory [19], we find a bound, depending only on known
quantities.

Before stating the main theorem of this section we set the notations.

3.1. Notations

We assume that the input space X is a compact subset of Rd and that the output
space Y is a compact subset of R. The assumption of compactness is for technical
reasons and simplifies the proofs.
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We let ρ be the unknown probability measure on Z = X × Y describing the
relation between x ∈ X and y ∈ Y , and ν the marginal distribution of ρ on X .
Moreover, for ν-almost all x ∈ X , let ρx be the conditional distribution of y with
respect to x .

If ξ is a random variable on Z , we denote its mean value by EZ (ξ),

EZ (ξ) =
∫

X×Y
ξ(x, y) dρ(x, y).

As usual, L2(X, ν) is the Hilbert space of square-integrable functions on X and
‖·‖ν , 〈·, ·〉ν are the corresponding norm and scalar product.

We let C(X) be the space of (real) continuous functions on X equipped with
the uniform norm, ‖ f ‖∞ = supx∈X | f (x)|.

We denote by f0 and σ0 the regression and noise functions defined, respectively,
as

f0(x) =
∫

Y
y dρx (y), (9)

σ 2
0 (x) =

(∫
Y

y2 dρx (y)

)
− ( f0(x))

2 , (10)

that belong to L2(X, ν) due to the compactness of X and Y .
Given � ∈ N, let Z � be the set of all training sets with � examples. We regard

Z � as a probability space with respect to the product measure ρ� = ρ ⊗ · · · ⊗ ρ.
If ξ is a random variable on Z � we denote its mean value by ED(ξ),

ED(ξ) =
∫

Z �
ξ(D) dρ�(D).

Given D ∈ Z �, let ρD be the empirical measure on X × Y defined by D, that
is,

ρD = 1

�

�∑
i=1

δxi δyi ,

where δx and δy are the Dirac measures at x and y, respectively.
We assume the hypothesis space H to be a reproducing kernel Hilbert space

with a continuous kernel K : X × X → R. The assumption on the kernel ensures
H being a Hilbert space of continuous functions. We let ‖·‖H and 〈·, ·〉H be the
corresponding norm and scalar product. We define

Kx (s) = K (s, x), x ∈ X,

κ = sup{
√

K (x, x) | x ∈ X}, (11)

δ = sup{|y| | y ∈ Y }. (12)
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It is well known [2], [7] that

H ⊂ C(X) ⊂ L2(X, ν),

f (x) = 〈 f, Kx 〉H , x ∈ X,

‖·‖ν ≤ ‖·‖∞ ≤ κ‖·‖H. (13)

We denote by Lν the integral operator on L2(X, ν) with kernel K , that is,

(Lν f )(s) =
∫

X
K (s, x) f (x) dν(x), s ∈ X, (14)

and by P the projection onto the closure of the range of Lν . In particular, one has
that the closure ofH with respect to the norm of L2(X, ν) is P L2(X, ν).

We recall that, given f ∈ L2(X, ν), the expected risk of f is

I [ f ] =
∫

X×Y
(y − f (x))2 dρ(x, y).

We let IH be the bias error,

IH = inf
f ∈H

I [ f ].

For any λ > 0 we denote by f λ the solution of

min
f ∈H
{I [ f ]+ λ‖ f ‖2

H}, (15)

which exists and is unique, see, for instance, [6].
Finally, given D ∈ Z �, the empirical risk of f ∈ C(X) is given by

I D
emp[ f ] = 1

�

�∑
i=1

(yi − f (xi ))
2.

For all λ > 0, the estimator f λD is defined as the unique solution of

min
f ∈H
{I D

emp[ f ]+ λ‖ f ‖2
H}, (16)

which exists and is unique [6].
In the following we will always consider the square root of the unbiased risk

that we indicate withR[ f ] to simplify the notation, that is,

R[ f ] =
√

I [ f ]− IH.

Indeed, (21) below will show that this quantity can conveniently be interpreted as
a distance in L2(X, ν).
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3.2. Main Results

The following theorem shows that, given the parameter λ, the expected risk of
the estimator f λD provided by the regularized least-squares algorithm concentrates
around the value I [ f λ]. Moreover, the deviation can be bounded by a simple
function S depending only on the confidence level, the number of examples, and
two constants, κ and δ, encoding some topological properties of X , Y , and the
kernel (see (11) and (12)).

Theorem 3.1. Given 0 < η < 1, � ∈ N, and λ > 0, with probability at least
1− η,

|R[ f λD]−R[ f λ]| ≤ S(λ, �, η),

where

S(λ, �, η) = δ κ2

λ
√
�

(
1+ κ√

λ

)(
1+

√
2 log

2

η

)
. (17)

The proof of Theorem 3.1 is postponed to Section 3.3 after a brief discussion
and some remarks on the result.

Let us interpret the quantities occurring in our inequality. The data-independent
termR[ f λ] can be interpreted as the price paid by replacing the regression function
f0 with the regularized solution f λ, in short, as the approximation error, compare
with [6] and [15].

The term S(λ, �, η) is a bound on
∣∣R[ f λD]−R[ f λ]

∣∣, that is, on the sample error
made by approximating f λ through a finite training set D, compare with [6], [15]
and [21].

Since Theorem 3.1 bounds R[ f λD] both from above and below and S(λ, �, η)
goes to zero for � going to +∞, the expected risk of f λD concentrates around the
expected risk of f λ. Then the splitting ofR[ f λD] into the approximation error and
the sample error appears quite natural and intrinsic to the problem.

3.3. Proofs

In the following, before dealing with the main result, we briefly sketch the scheme
of the proof and we show some useful lemmas.

The proof of Theorem 3.1 is essentially based on two steps:

• We show that the regularized least-squares algorithm satisfies a kind of stabil-
ity property with respect to variation of the training set, compare with [4].
• We give an estimate of the mean value of R[ f λD] (and hence of the mean

value of the expected risk).

More precisely, given λ, we regardR[ f λD] as a real random variable on Z � and we
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apply the McDiarmid inequality [13]. This inequality tells us that

Prob{D ∈ Z � | |R[ f λD]− ED
(
R[ f λD]

) | ≥ ε} ≤ 2e−2ε2/
∑�

i=1
c2

i (18)

provided that

sup
D∈Z �

sup
(x ′,y′)∈Z

|R[ f λD]−R[ f λDi ] | ≤ ci , (19)

where Di is the training set with the i th example being replaced by (x ′, y′).
To work out the proof, we recall some preliminary facts. Since we are consid-

ering the quadratic loss the expected risk of f ∈ H can be written in the following
way:

I [ f ] = ‖ f − f0‖2
ν + ‖σ0‖2

ν (20)

= ‖P( f − f0)‖2
ν + ‖(I − P)( f − f0)‖2

ν + ‖σ0‖2
ν

= ‖ f − P f0‖2
ν + ‖(I − P)( f − f0)‖2

ν + ‖σ0‖2
ν

= ‖ f − P f0‖2
ν + ‖(I − P) f0‖2

ν + ‖σ0‖2
ν,

where f0 and σ0 are given by (9) and (10), and (I − P) f = 0 since f ∈ H ⊂
P L2(X, ν).

It follows that IH = inf f ∈H I [ f ] = ‖(I − P) f0‖2
ν + ‖σ0‖2

ν and

R[ f ] =
√

I [ f ]− IH = ‖ f − P f0‖ν . (21)

We now recall the explicit form of the minimizers of (15) and (16). One has
that

f λ = (T + λ)−1gρ, (22)

f λD = (Tx + λ)−1gD, (23)

where T and Tx are positive operators onH given by

T =
∫

X
〈·, Kx 〉H Kx dν(x), (24)

Tx = 1

�

�∑
i=1

〈·, Kxi 〉HKxi , (25)

and gρ and gD are functions inH defined by

gρ =
∫

X
Kx f0(x) dν(x), (26)

gD = 1

�

�∑
i=1

yi Kxi , (27)
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(in (24) the integral is taken with respect to the trace operator norm, while in (26)
the integral is with respect to the norm of H. Both integrals are finite since the
integrands are continuous and X is compact).

In order to present the proof of Theorem 3.1 we need some preliminary lemmas.
The first one provides an upper bound on ‖ f λD‖H. The proof is standard and we
report it for completeness; see, for instance, [4].

Lemma 3.1. For all λ > 0,

‖ f λD‖H ≤
δ√
λ
.

Proof. Since by definition, see (16),

f λD = argmin
f ∈H
{I D

emp[ f ]+ λ‖ f ‖2
H},

with the choice f = 0, it follows that

I D
emp[ f λD]+ λ‖ f λD‖2

H ≤ I D
emp[0]+ λ‖0‖2

H =
1

�

�∑
i=1

y2
i ≤ δ2,

where in the last inequality we recalled the definition of δ, see (12). The thesis
follows from the fact that I D

emp[ f λD] ≥ 0.

The next step is the estimate of the expectation value of ‖Tx − T ‖ (here ‖·‖ de-
notes the operator norm inH) and that of ‖gD − gρ‖H. To this end, we recall the
following property regarding vector-valued random variables on Z . Let K be a
Hilbert space and ξ a K-valued random variable on Z , then

ED

(∥∥∥∥∥1

�

�∑
i=1

ξ(xi , yi )− EZ (ξ)

∥∥∥∥∥
K

)2

≤ ED



∥∥∥∥∥1

�

�∑
i=1

ξ(xi , yi )− EZ (ξ)

∥∥∥∥∥
2

K




= 1

�

(
EZ (‖ξ‖2

K)− ‖EZ (ξ)‖2
K
)
. (28)

The first inequality is a consequence of the Schwarz inequality and the equality is
a straightforward extension of the well-known property of real random variables
[9].

Lemma 3.2. Let a1 =
∫

X×X (K (x, x)2 − K (x, x ′)2) dν(x) dν(x ′), then

ED(‖Tx − T ‖) ≤
√

a1

�
≤ κ2

√
�
.
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Proof. Let B2(H) be the Hilbert space of self-adjoint Hilbert–Schmidt operators
on H with scalar product 〈A, B〉B2(H) = Tr(AB). Notice that, for all x ∈ X , the
rank-one operator 〈·, Kx 〉HKx is in B2(H), so we can define the B2(H)-valued
random variable ξ as

ξ(x) = 〈·, Kx 〉HKx .

Since Tr(〈·, Kx 〉HKx ′) = 〈Kx ′ , Kx 〉H , then

‖ξ(x)− ξ(x ′)‖2
B2(H) = Tr((ξ(x)− ξ(x ′))2)

= K 2(x, x)+ K 2(x ′, x ′)− 2K 2(x ′, x),

which implies the continuity of ξ . Its mean value is given by

EZ (ξ) =
∫

X
〈·, Kx 〉H Kx dν(x),

= T .

Now, observe that

ED(‖ξ‖2
B2(H)) = ED(Tr (〈·, Kx 〉H Kx K (x, x)))

=
∫

X
K (x, x)2 dν(x).

Finally,

‖EZ (ξ)‖2
B2(H) = Tr(T 2)

=
∫

X×X
Tr(〈·, Kx 〉H Kx ′K (x, x ′)) dν(x) dν(x ′)

=
∫

X×X
K (x, x ′)2 dν(x) dν(x ′).

Applying (28) and the definition of a1, one has that

ED(‖Tx − T ‖B2(H)) ≤
√

a1

�
.

The thesis follows observing that

‖Tx − T ‖ ≤ ‖Tx − T ‖B2(H)

and

a1 ≤
∫

X
K (x, x)2 dν(x) ≤ κ4.
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Lemma 3.3. Let a2 =
∫

Z y2 K (x, x) dρ(x, y)− ‖gρ‖2
H, then

ED(‖gD − gρ‖H) ≤
√

a2

�
≤ δ κ√

�
.

Proof. We follow the scheme of the previous proof. Let ξ be theH-valued random
variable

ξ(x, y) = yKx .

Since

‖ξ(x, y)− ξ(x ′, y′)‖2
H = y2 K (x, x)+ y′2 K (x ′, x ′)− 2yy′K (x, x ′),

ξ is continuous and

EZ (ξ) =
∫

X×Y
yKx dρ(x, y) = gρ,

by definition of gρ .
Moreover,

EZ (‖ξ‖2
H) =

∫
X×Y

y2 K (x, x) dρ(x, y).

Applying (28) and the definition of a2, one has that

ED(‖gD − gρ‖H) ≤ a2

�
.

The thesis follows observing that

0 ≤ a2 ≤
∫

X×Y
y2 K (x, x) dρ(x, y) ≤ δ2 κ2.

The next lemma estimates the expectation value ofR[ f λD].

Lemma 3.4. Following the above notations

|ED(R[ f λD])−R[ f λ]| ≤ κ2δ

λ
√
�

(
1+ κ√

λ

)
.
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Proof. By means of (23),

f λD = (Tx + λ)−1gD = (T + λ)−1
(
gD − gρ

)
+ (T + λ)−1(T − Tx)(Tx + λ)−1gD + (T + λ)−1gρ,

that is, using (22),

f λD − f λ = (T + λ)−1
(
gD − gρ

)+ (T + λ)−1(T − Tx) f λD.

Using (21) and the triangle inequality we have that

|R[ f λD]−R[ f λ]| ≤ ‖ f λD − f λ‖ν
(Eq.(13)) ≤ κ‖(T + λ)−1(gD − gρ)‖H + κ‖(T + λ)−1(T − Tx) f λD‖H

≤ κ

λ
‖gD − gρ‖H + κδ

λ3/2
‖T − Tx‖,

where ‖(T + λ)−1‖ ≤ 1/λ and we used Lemma 3.1 to bound ‖ f λD‖H.
Finally we take the mean value on D and use Lemmas 3.2 and 3.3.

We are now ready to prove the main result of the section.

Proof of Theorem 3.1. The proof uses the McDiarmid inequality (18). Due to
(21), the conditions (19) become

sup
D∈Z �

sup
(x ′,y′)∈Z

| ‖ f λD − P f0‖ν − ‖ f λDi − P f0‖ν | ≤ ci

(we recall that Di is the training set where the i th example is replaced by (x ′, y′)).
In order to compute the constants ci , we notice that f λD can be decomposed, by

means of (23), as

f λD=(Tx + λ)−1gD = (Tx + λ)−1 (gD − gDi )

+(Tx + λ)−1(Txi − Tx)(Txi+λ)−1gDi + (Txi + λ)−1gDi ,

that is, again using (23) with Di ,

f λD − f λDi = (Tx + λ)−1(gD − gDi )+ (Tx + λ)−1(Txi − Tx) f λDi .
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By the triangle inequality, we can write

| ‖ f λD − P f0‖ν − ‖ f λDi − P f0‖ν | ≤ ‖ f λD − f λDi‖ν
(Eq. (13)) ≤ κ‖(Tx + λ)−1(gD − gDi )‖H

+ κ‖(Tx + λ)−1(Tx − Txi ) f λDi‖H
≤ 2δ κ2

λ�

(
1+ κ√

λ

)
:= ci ,

where we used Lemma 3.1 to bound ‖ f λDi‖H and

‖(Tx + λ)−1‖ ≤ 1

λ
,

‖Tx − Txi‖ = 1

�
‖〈·, Kxi 〉HKxi − 〈·, Kx ′i 〉HKx ′i‖ ≤

1

�
2 κ2,

‖gD − gDi‖H = 1

�
‖yKxi − y′i Kx ′i‖H ≤

1

�
2δ κ.

Plugging the constants ci into the McDiarmid inequality (18), we have that

|R[ f λD]− ED(R[ f λD])| ≤ ε

with probability

1− 2e−ε
2/(2(δ κ2/(λ

√
�(1+ κ/√λ))2 = 1− η

so, with probability at least 1− η,

|R[ f λD]− ED(R[ f λD])| ≤ δ κ2

λ
√
�

(
1+ κ√

λ

)√
2 log

2

η
.

The above bound together with Lemma 3.4, once again by the triangle inequality,
completes the proof.

4. Estimate of the Optimal Parameter

We are now in the position to apply the results of the previous section to the
actual estimate of the regularization parameter, following the technique presented
in Section 2.
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From Theorem 3.1 we can easily derive the following bound:

R[ f λD] ≤ R[ f λ]+ S(λ, �, η), (29)

which holds with probability at least 1− η.
From the explicit form of S(λ, �, η), we have that S(λ, �, η) decreases with λ

and goes to +∞ when λ goes to 0. On the other hand, it is easy to check that
R[ f λ] is an increasing function of λ and goes to 0 for λ going to 0 [6].

The bound (29) is of the form of (4) and can be used in the model selection rule
defined by (6). Our definition ensures the existence and uniqueness of the estimate
λ0 of the optimal parameter, however, we still have to prove that λ0 is finite. We
now prove that the bound in (29) provides an estimate λ0 that is finite for large
enough �.

We consider a slightly more general case that will be useful in the following.
We let A(λ) be an upper bound on the approximation error, that is, an increasing,
continuous function from [0,+∞] to [0,+∞] satisfying

A(λ) ≥ R[ f λ],

and

lim
λ→0

A(λ) = 0.

The following proposition highlights the special role played by the approxima-
tion error R[ f λ] with respect to an arbitrary data-independent bound of the form
given in (4).

Proposition 4.1. Let E(λ, �, η) be a bound for R[ f λD], that is, with probability
at least 1− η,

R[ f λD] ≤ E(λ, �, η).

Assume that lim�→∞ E(λ, �, η) = A(λ) for all η. Then,

R[ f λ] ≤ A(λ).

Proof. Let ε > 0 and η < 1
2 . Since lim�→∞ S(λ, �, η) = 0, there is an �1 such

that

S(λ, �, η) ≤ ε for all � ≥ �1, (30)

and, by definition of A(λ), there is an �2 such that

|E(λ, �, η)− A(λ)| ≤ ε for all � ≥ �2. (31)

Let �3 = max{�1, �2}. By Theorem 3.1, with probability at least 1− η,

|R[ f λD]−R[ f λ]| ≤ S(λ, �3, η) ≤ ε, (32)
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where we used (30). By definition one has that, with probability at least 1− η,

R[ f λD] ≤ E(λ, �3, η) ≤ A(λ)+ ε, (33)

where we used (31).
It follows from (32) and (33) that, with probability at least 1− 2η > 0,

A(λ) ≥ R[ f λD]− ε ≥ R[ f λ]− 2ε.

Since ε is arbitrary, one has the thesis.

According to the discussion in Section 2, given η and �, we estimate the optimal
parameter λ0(�, η) as the one that minimizes the bound

E(λ, �, η) = A(λ)+ S(λ, �, η).

The following proposition shows that λ0 is finite, at least if � is large enough.

Proposition 4.2. Assume P f0 �= 0 and let 0 < η < 1. There is � ∈ N such that
λ0(�, η) is finite for all � ≥ �.

In particular, if limλ→∞ A(λ) = +∞, then λ0(�, η) is finite for every �.

Proof. We will prove the finiteness of λ0 by applying the Weierstrass theorem to
the continuous function E(λ, �, η).

Clearly, limλ→0 E(λ, �, η) = +∞. Moreover, letting M = limλ→∞ A(λ),
which always exists by the assumed continuity at λ = +∞, one has that

lim
λ→∞

E(λ, �, η) = M.

We now prove that, if � is large enough, there is λ > 0 such that E(λ, �, η) < M .
In fact, since A(λ) ≥ R[ f λ] and limλ→+∞R[ f λ] = ‖P f0‖ν > 0, then M > 0.
Moreover, since limλ→0 A(λ) = 0, there is λ > 0 such that A(λ) < M/2. Finally,
observing that lim�→∞ S(λ, �, η) = 0, we conclude that there exists � ∈ N such
that

S(λ, �, η) <
M

2
.

It follows that, since S is a decreasing function of �, for all � ≥ �,

E(λ, �, η) ≤ E(λ, �, η) < M.

Hence, by means of the Weierstrass theorem E(λ, �, η) attains its minimum. More-
over, min E ≤ E(λ, �, η) < M so that all the minimizers are finite.

Assume now that limλ→∞ A(λ)=+∞, then M =+∞ and, clearly, min E <
+∞, so that the minimizers are finite for all �.
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Remark 4.1. The assumption that P f0 �= 0 is natural. If P f0 = 0, the problem
of model selection is trivial sinceH is too poor to give a reasonable approximation
of f0 still with infinite data.

In order to actually use the estimate λ0, we have to explicitly compute the
minimizer of the bound E . Hence, the function E has to be computable. Though
the sample error S(λ, �, η) is a simple function of the parameters λ, �, η, κ, and δ,
the approximation errorR[ f λ] is not directly computable and we need a suitable
bound.

We do not discuss the problem of the estimate of the approximation error since
there is a large literature on the topic; see [15], [19] and references therein. We
only notice that a common features of these bounds is that one has to make some
assumptions on the probability distribution ρ, that is, on the regression function
f0. Clearly, with these hypotheses we lose in generality. However if we want to
solve the bias-variance problem in this framework, it seems to be an unavoidable
step (compare with [6], [7], [15]).

Using an estimate on the approximation error A(λ) given in Theorem 3, Chap-
ter II of [7], one easily obtains the following result:1

Corollary 4.1. Let r ∈ (0, 1] and Cr > 0 such that ‖L−r
ν P f0‖ν ≤ Cr , where f0

is given by (9), Lν and P by (14), then

R[ f λD] ≤ λr Cr + S(λ, �, η) =: Er (λ, �, η),

with probability at least 1− η.
In particular, for all � and η, the bound Er gives rise to a finite estimate λr

0(�, η)

of the optimal parameter, which is the unique solution of the following equation:

rCrλ
r+1 = δ κ2

√
�

(
1+ 3 κ

2
√
λ

)(
1+

√
2 log

2

η

)
.

To compare our results with the bounds obtained in the literature we assume that
f0 belongs to the hypothesis space so we can choose r = 1

2 in the above corollary.
Since IH = I [ f0], I [ f ] = R[ f ]2 + I [ f0] so that

I [ f λD] = I [ f0]+ O(λ)+ O

(
1

�λ3

)

with probability greater than 1 − η. The best rate of convergence is obtained by
choosing λ� = 1/ 4

√
� so that

I [ f λD] = I [ f0]+ O

(
1

4
√
�

)
.

1 In Appendix A we provide a direct proof of such an estimate.
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The rate is comparable with the rate we can deduce from the bounds of [4] where,
however, the dependence of λ from � is not considered.2 In [23] a bound of the
order O(1/

√
n) is obtained using a leave-one-out technique, but with a worse

confidence level.3

Finally, we notice that our model selection rule, based on an a priori assump-
tion on the target function, is only of theoretical use since the condition that the
approximation error is of the order O(λr ) is unstable with respect to the choice of
f0 (if the kernel is infinite dimensional, as the Gaussian kernel) [19].

4.1. Asymptotic Properties and Consistency

The aim of the present subsection is to state some asymptotic properties, for
an increasing number of examples �, of the regularized least-squares algorithm
provided with the parameter choice described at the beginning of this section. In
particular, we consider properties of the selected parameter λ0 = λ0(�, η) with
respect to the notion of consistency already introduced by Definition 2.1. For
clarity we restate here that definition in terms of the modified expected riskR[ f λD]
defined in Section 3.

Definition 4.1. The one-parameter family of estimators f λD provided with a
model selection rule λ0(�) is said to be (weakly universally) consistent if, for
every ε > 0, it holds that

lim
�→∞

sup
ρ

Prob
{

D ∈ Z �
∣∣∣R[ f λ0(�)

D ] > ε
}
= 0,

where the sup is over the set of all probability measures on X × Y .

From a general point of view consistency can be considered as a property of the
algorithm according to which, for a large data amount, the algorithm provides the
best possible estimator.

In order to apply this definition to our selection rule we need to specify the
explicit dependence of the confidence η on the number of examples �, i.e., to
transform the two-parameter family of real positive numbers λ0(�, η) to the one-
parameter family λ0(�) = λ0(�, η(�)) corresponding to a specific choice η(�) of
the confidence level. We assume the following power law behavior:

η(�) = �−p p > 0. (34)

The main result of this section is contained in the following theorem where we
prove that the regularized least-squares algorithm provided by our model selection
rule is consistent.

2 See Theorems 12 and 22 of [4], in particular, the proof of the latter theorem gives an upper bound
of the sample error of the order O(1/

√
�λ3/2).

3 See discussions at the end of Sections 4 and 5 of [23].
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Theorem 4.1. Given λ0(�) = λ0(�, η(�)) where η(�) is as in (34), then the
following three properties hold:

(1) if �′ > � > 2, then λ0(�
′) ≤ λ0(�);

(2) lim�→∞ λ0(�) = 0;
(3) the sequence (λ0(�))

∞
�=1 provides consistency.

Proof. First of all, let us notice that the dependence of E(λ, �, η) on � and η can
be factorized as follows:

E(λ, �, η) = A(λ)+ C(�, η)s(λ), (35)

where the sample error term S(λ, �, η) in (17) has been split by means of the
functions C(�, η) and s(λ) defined by

C(�, η) = δ√
�

(
1+

√
2 log

2

η

)
, (36)

s(λ) = κ2

λ

(
1+ κ√

λ

)
. (37)

In order to prove the first part of Theorem 4.1 we show that, if �′ > � > 2, then

E(λ, η(�′), �′) > E(λ0(�), η(�
′), �′) for every λ > λ0(�), (38)

implying that the minimizer of E(λ, η(�′), �′), λ0(�
′), is not greater than λ0(�), as

claimed. Inequality (38) can be proved considering the identity

E(λ, η(�′), �′) = E(λ, η(�), �)− (C(η(�), �)− C(η(�′), �′)
)
s(λ). (39)

First of all, we observe that, due to the power law behavior of η(�), the func-
tion C(η(�), �) = (δ/√�)(1 + √2 log(2�p)) is strictly decreasing for � > 2, so
that under the conditions on �′ and � in the text of Theorem 4.1, the difference
C(η(�), �)− C(η(�′), �′) is positive. Moreover, since s(λ) is a strictly decreasing
function, and due to the definition of λ0(�) as the maximum of the minimizers of
E(λ, η(�), �) (Eq. (6)), we can bound the two terms in the previous equality as
follows:

E(λ, η(�′), �′) > E(λ0(�), η(�), �)− (C(η(�), �)− C(η(�′), �′))s(λ0(�))

for every λ > λ0(�). Using again (39), the previous inequality reduces to (38) as
required.

We now prove the remaining two parts of Theorem 4.1. To this end we produce
a sequence (λ(�))∞�=1 such that

lim
�→+∞

E(λ(�), η(�), �) = 0. (40)
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Since, by the definition of λ0(�), E(λ0(�), η(�
′), �′) is not greater than E(λ(�),

η(�′), �′), a fortiori the following limit holds

lim
�→+∞

E(λ0(�), η(�), �) = 0. (41)

Moreover, since A(λ) is bounded from above by E(λ, �, η), A(λ) also vanishes
for increasing �. From the last fact the second part of the theorem follows recalling
that A(λ) is an increasing function of λ and A(0) = 0 (see at the beginning of this
section).

Equation (41) also ensures consistency of the sequence (λ0(�))
∞
�=1 since, by our

definition of the probabilistic bound E(λ, �, η), we can write

Prob
{

D ∈ Z �
∣∣∣R[ f λ0(�)

D ] > E(λ0(�), η(�), �)
}
≤ η(�),

and, moreover, η(�) goes to zero as � goes to infinity. It remains to show a sequence
verifying (40). Let us choose the following λ(�),

λ(�) = �−q with 0 < q < 1
3 .

First, since λ(�) vanishes as � increases, then the approximation term A(λ(�)) goes
to zero. Moreover, recalling the representation in (35), we have to show that

lim
�→+∞

C(η(�), �)s(λ(�)) = 0,

this fact can be directly verified by substitution of the expressions of λ and η into
the functions s and C .

The previous result reduces to the approximation error bound considered in
Corollary 4.1. In this case the computable bound Er given in Corollary 4.1 allows
us to obtain the explicit asymptotic form for the selected λ0.

Theorem 4.2. Given the sequence (λr
0(�))

∞
�=1 such that λr

0(�) minimizes the
bound Er (λ, η(�), �) of Corollary 4.1 then we have that:

(1) for all � > 0, λr
0(�) is finite;

(2) λr
0(�) = �−1/(3+2r)

(
3 κ3δ

2rCr
(1+√2 log(2�p))

)2/(3+2r)

+ O
(
�−3/2(3+2r)

)
.

Proof. As in the proof of Theorem 4.1 we introduce the functions C and s, defined
in (37)–(37), to factorize in Er the dependence on � and η, that is, we write

Er (λ, �, η) = λr Cr + C(�, η)s(λ).

Then, the first part of Theorem 4.2 follows immediately from Proposition 4.2 as a
consequence of the divergence of Er for increasing λ.
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The second part can be proved exploiting the differentiability of Er with respect
to λ. Since λr

0(�) is a minimizer of Er , it must be a zero of its derivative. By explicit
differentiation we obtain thatλr

0(�) is a solution of the following algebraic equation:

2rCr κ
−2λ(3+2r)/2 = C(η(�), �)(2λ1/2 + 3 κ). (42)

It is convenient to reformulate the last equation in terms of the auxiliary variables
x(�) and y(�) defined by

x(�) = λC(η(�), �)−2/(3+2r),

y(�) = C(η(�), �)1/(3+2r).

Using this notation (42) becomes

rCr κ
−2x(�)1+r − 3

2 κx(�)−1/2 = y(�). (43)

The function of the unknown x(�) on the right-hand side of (43) has a positive
derivative, moreover, it assumes arbitrary real values as its arguments range the
positive real numbers. This fact proves that, for a given �, there exists a unique
solution x(�). This also implies that Er has a unique finite minimizer.

Since by definition y(�) is O(�−1/2(3+2r)), we deduce that, for increasing �,
x(�) goes to the zero of the right-hand side of (43), in fact, to the value

x0 =
(

3 κ3

2rCr

)2/(3+2r)

.

Finally, due to the regular behavior of the function in (43) in x0, we can write

x(�) = x0 + O(�−1/2(3+2r)),

that provides the claimed result.

5. Conclusions

In this paper we focus on a functional analytical approach to learning theory, in
the same spirit of [7]. Unlike other studies we do not examine the deviation of
the empirical error from the expected error, but we analyze directly the expected
risk of the solution. As a consequence, the splitting of the expected error in an
estimation error term and an approximation error follows naturally giving rise to
a bias-variance problem.

In this paper we show a possible way to solve this problem by proposing a model
selection criterion that relies on the stability properties of the regularized least-
squares algorithm and does not make direct use of any complexity measures. In
particular, our estimates depend only on a boundedness assumption on the output
space and the kernel.
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Our analysis uses extensively the special properties of the square loss function,
henceforth it would be interesting to extend our approach to other loss functions.
We think that our results may be improved by taking into account more information
about the structure of the hypothesis space.
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Appendix A. Bounding the Approximation Error

In this appendix we report an elementary proof of the following result from ap-
proximation theory.

Theorem A.1. Assume that there is r ∈ (0, 1] such that P f0 is in the domain of
L−r
ν and let Cr be a constant such that ‖L−r

ν P f0‖ν ≤ Cr . Then

R[ f λ] ≤ λr Cr .

Proof. Starting from (21) in Section 3.3 and the definition of Cr we just have to
show that

‖ f λ − P f0‖ν ≤ λr‖L−r
ν P f0‖ν .

Due to the fact that K is a Mercer kernel, Lν is a compact positive operator and, by
spectral decomposition of Lν , there is a sequence (ϕn)

N
n=1 in L2(X, ν) (possibly

N = +∞) such that,

〈ϕn, ϕm〉ν = δnm,

Lν f =
N∑

n=1

σ 2
n 〈 f, ϕn〉ν ϕn,

where σn ≥ σn+1 > 0. In particular, (ϕn)
N
i=1 is an orthonormal basis of the range

of P .
Moreover, since the function g(x) = xr is a concave function on (0,+∞) and

g′(1) = r , then

xr ≤ r(x − 1)+ 1 ≤ x + 1. (44)

Recalling that

f λ = (Lν + λ)−1Lν f0,
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‖ f λ − P f0‖2
ν =

N∑
n=1

〈((Lν + λ)−1 Lν − I )P f0, ϕn〉2ν

=
N∑

n=1

(
σ 2

n

σ 2
n + λ

− 1

)2

〈P f0, ϕn〉2ν
(

xn = σ 2
n

λ

)
=

N∑
n=1

(
1

xn + 1

)2

〈P f0, ϕn〉2ν

(Eq. (44)) ≤
N∑

n=1

(
1

xr
n

)2

〈P f0, ϕn〉2ν

= λ2r
N∑

n=1

(
1

(σ 2
n )

r

)2

〈P f0, ϕn〉2ν

= λ2r‖L−r
ν P f0‖2

ν .
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